

LA-UR-19-21043

Approved for public release; distribution is unlimited.

Title: Additive Manufacturing at Los Alamos National Laboratory: Part of a

Larger Vision

Author(s): Marchi, Alexandria Nicole

Intended for: Invited Talk to New Mexico Tech

Issued: 2019-02-07

EST.1943 -

Delivering science and technology to protect our nation and promote world stability

Additive Manufacturing at Los Alamos National Laboratory

Part of a Larger Vision

Alexandria Nicole Marchi, PhD

Materials Physics and Applications Division
Los Alamos National Laboratory
February 8, 2019

It's not the Destination, it's the Journey...

- Ralph Waldo Emerson or Lynn H. Hough (maybe)

2008-2014

1992-2001

s

2001-2003

- https://babymhospital.org/cardiothoracic-surgery.html
- https://sciencenotes.org/chemistry-jokes/
- http://labphoto.tumblr.com/post/128579102235/ bucket-chemistry-how-not-to-perform-a-reaction
- Rothemund, Nature (2006)
- 1663, March 2016

Photo Credit:

- www.Formlabs.com

Biochemistry Meets Nanotechnology: DNA Origami

M13mp18 viral ~250 unique strands designed to direct genome DNA, 7249-nt scaffold strand into desired shape

Organization for electrical or biomedical engineering

Single-electron transistor

Cell receptor organization

From Tylenol to Nuclear Security: Tamper Evident Seals Detect Access and Maintain Continuity of Knowledge

Top Down vs. Bottom up Manufacturing → Design Flexibility and Higher Detail

Subtractive Manufacturing

Feedstock:

Process:

Finished Part:

Additive Manufacturing

AM: Complex Design → Slicing → Feedstock and

Process Selection → **Post Processing**

Computer Aided

Design & Analysis

Slicing & **Tool Path** Determination

AM Process

Additive

Manufacturing

Component Inspection

AM Benefits: Full Design Freedom...Kinda

- Make complex shapes unattainable by other processes
- Internal cavities or passages
- Part count reduction (simpler assembly, less leak paths, etc)
- Combine materials and geometry to create parts with variable/tunable properties
- Tailored specialized parts
- Rapid production
- New design space!

Fused Deposition Modeling (FDM): Thermoplastic

Extrusion through Heated Nozzle

Feedstock: Thermoplastic, Imbedded Powders

Mechanical Properties of Printed Parts are Anisotropic

Metal Printing: Laser or e-beam of Sintering Powder or Wire

Feedstock: Metal Powder, Metal Wire

Binderjet: Inkjet Printer Binds Powder

Polyjet: Photocurable Inkjet Drops

Feedstock: Photocurable Polymer

Stereolithography (SLA): First AM Process (1984)

Feedstock: Photocurable Resin

DLP Stereolithography Projects the Image onto the Resin

- High Speed Printing!

Feedstock: Photocurable Polymer

Basic Recipe of SLA Resin is Generally Simple

Monomers

Monomers Polymerize from Free Radical Photoinitiator

Photoinitiator

$$\begin{array}{c|c}
 & H_3C \\
 & O \\
 & O$$

Light Absorber to Optimize Printability

Absorber

AM is Not Perfect – The Problems are Opportunities

- Inaccurate geometry and poor surface finish
- Limited materials selection and uncertain properties
- Uncertain fabrication and reproducibility
- Thermal stresses within parts
- Slow production rate
- Small build size
- Post machining often required
- Machine variability

Successful AM Builds Requires New Design Thought **Processes**

Which part should be easier to build with DMLS?

Recognition of the Flaws in Each Print Method Facilitate **Print Success**

Thin-walled structures requiring support structure are difficult to fabricate with AM.

Limitations Should Lead to Cautious Optimism of AM

- Defect Prevention
- Empirical design rules
 - Overhangs
 - Infill
 - Features & Resolution
- Integrated parts and articulated parts
- Organic, Lattice, Cellular, Auxetic structures
- Topological optimization
 - Could produce a Ti part that is stronger but lighter than Al part

Clockwise from top left 30°, 22.5°, 15°, and 7.5° angled overhangs

Tooling & Fixtures

Forging & Casting Dies

Diagnostic Holders

Various Brackets

Concept or Functional Parts and Assemblies

Spectrometer

Complex Heat Exchangers

Water Skid Assembly

Prosthetics

Art and Jewelry

Construction

Food

Reverse Engineering

Optical Scanning to 3D Printing

Interest in Rapid Manufacturing is Growing Rapidly

Get Exited, Stay Flexible, Keep Options Open, Build your Network!